CUDA ускорение для обучения нейросети с модулем ultralytics

Рейтинг: 0Ответов: 0Опубликовано: 12.07.2023
  • Я установил ultralytics
  • Начала обучать модель YOLOV8n
  • Понял, что CUDA не работает, установил CUDA Toolkit и cuDNN
  • Некоторое время догонял что torch тоже нужен не простой а с CUDA
  • Установил torch такой командой:
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
  • Проверил подхватил ли torch CUDA таким образом:
import torch
print(torch.cuda.is_available())
  • Увидел true, уже обрадовался, но не тут то было
  • Начал обучать модель вот так:
from ultralytics import YOLO
 
model = YOLO('yolov8n.pt')
 
results = model.train(
   data='pothole_v8.yaml',
   imgsz=1280,
   epochs=50,
   device=0,
   batch=8,
   name='yolov8n_v8_50e')
  • И по какой-то неведомой мне причине модель начинает обучаться какбуд-то бы заного как только доходит собственно до самого процесса обучения и пишет что нужно использовать какой-то fork для запуска дочерних процессов.
  • Вывод в терминал:
PS C:\workspace\mashine lerning> & C:/Users/Firnen/AppData/Local/Programs/Python/Python311/python.exe "c:/workspace/mashine lerning/train.py"
Ultralytics YOLOv8.0.132  Python-3.11.4 torch-2.0.0+cu117 CUDA:0 (NVIDIA GeForce GTX 1060 3GB, 3072MiB)
yolo\engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=pothole_v8.yaml, epochs=50, patience=50, batch=8, imgsz=1280, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=yolov8n_v8_50e, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs\detect\yolov8n_v8_50e7
Overriding model.yaml nc=80 with nc=1

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 22        [15, 18, 21]  1    751507  ultralytics.nn.modules.head.Detect           [1, [64, 128, 256]]
Model summary: 225 layers, 3011043 parameters, 3011027 gradients

Transferred 319/355 items from pretrained weights
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed 
train: Scanning C:\workspace\mashine lerning\pothole_dataset_v8\train\labels.cache... 6960 images, 10 backgrounds, 0 corrupt: 100%|██████████| 6962/6962 [00:00<?, ?it/s]
train: WARNING  C:\workspace\mashine lerning\pothole_dataset_v8\train\images\G0012012.jpg: 2 duplicate labels removed
train: WARNING  C:\workspace\mashine lerning\pothole_dataset_v8\train\images\G0052120.jpg: 1 duplicate labels removed
Ultralytics YOLOv8.0.132  Python-3.11.4 torch-2.0.0+cu117 CUDA:0 (NVIDIA GeForce GTX 1060 3GB, 3072MiB)
yolo\engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=pothole_v8.yaml, epochs=50, patience=50, batch=8, imgsz=1280, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=yolov8n_v8_50e, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs\detect\yolov8n_v8_50e8
Overriding model.yaml nc=80 with nc=1

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 22        [15, 18, 21]  1    751507  ultralytics.nn.modules.head.Detect           [1, [64, 128, 256]]
Model summary: 225 layers, 3011043 parameters, 3011027 gradients

Transferred 319/355 items from pretrained weights
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed 
train: Scanning C:\workspace\mashine lerning\pothole_dataset_v8\train\labels.cache... 6960 images, 10 backgrounds, 0 corrupt: 100%|██████████| 6962/6962 [00:00<?, ?it/s]
train: WARNING  C:\workspace\mashine lerning\pothole_dataset_v8\train\images\G0012012.jpg: 2 duplicate labels removed
train: WARNING  C:\workspace\mashine lerning\pothole_dataset_v8\train\images\G0052120.jpg: 1 duplicate labels removed
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\spawn.py", line 120, in spawn_main
    exitcode = _main(fd, parent_sentinel)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\spawn.py", line 129, in _main
    prepare(preparation_data)
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\spawn.py", line 240, in prepare
    _fixup_main_from_path(data['init_main_from_path'])
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\spawn.py", line 291, in _fixup_main_from_path
    main_content = runpy.run_path(main_path,
                   ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "<frozen runpy>", line 291, in run_path
  File "<frozen runpy>", line 98, in _run_module_code
  File "<frozen runpy>", line 88, in _run_code
  File "c:\workspace\mashine lerning\train.py", line 7, in <module>
    results = model.train(
              ^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\ultralytics\yolo\engine\model.py", line 373, in train
    self.trainer.train()
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\ultralytics\yolo\engine\trainer.py", line 192, in train
    self._do_train(world_size)
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\ultralytics\yolo\engine\trainer.py", line 276, in _do_train
    self._setup_train(world_size)
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\ultralytics\yolo\engine\trainer.py", line 240, in _setup_train
    self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train')
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\ultralytics\yolo\v8\detect\train.py", line 60, in get_dataloader
    return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # return dataloader
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\ultralytics\yolo\data\build.py", line 101, in build_dataloader
    return InfiniteDataLoader(dataset=dataset,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\ultralytics\yolo\data\build.py", line 29, in __init__
    self.iterator = super().__iter__()
                    ^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch\utils\data\dataloader.py", line 442, in __iter__
    return self._get_iterator()
           ^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch\utils\data\dataloader.py", line 388, in _get_iterator
    return _MultiProcessingDataLoaderIter(self)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch\utils\data\dataloader.py", line 1043, in __init__
    w.start()
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\process.py", line 121, in start
    self._popen = self._Popen(self)
                  ^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\context.py", line 224, in _Popen
    return _default_context.get_context().Process._Popen(process_obj)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\context.py", line 336, in _Popen
    return Popen(process_obj)
           ^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__
    prep_data = spawn.get_preparation_data(process_obj._name)
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\spawn.py", line 158, in get_preparation_data
    _check_not_importing_main()
  File "C:\Users\Firnen\AppData\Local\Programs\Python\Python311\Lib\multiprocessing\spawn.py", line 138, in _check_not_importing_main
    raise RuntimeError('''
RuntimeError:
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.
  • При этом без CUDA все обучается нормально, но долго
  • Может кто-то сталкивался с подобным, или может знает куда копать? Потому что пока я в тупике.

Ответы

Ответов пока нет.